software penambah saldo rekening

software penambah saldo rekening
software psr

Bisnis Online Rp.10.000

Tokokite

Pasang Iklan Gratiiiissss Jual-beli dan Cari Barang Kebutuhanmu serta Informasi Lowongan Kerja di Tokokite.com

Rabu, 12 September 2012

Jenis Dan Lambang Resistor

Jenis Resistor
Resistor adalah komponen elektronika berjenis pasif yang mempunyai sifat menghambat arus listrik Satuan nilai dari resistor adalah ohm, biasa disimbolkan Ω.
Fungsi dari Resistor adalah :
1. Sebagai pembagi arus
2. Sebagai penurun tegangan
3. Sebagai pembagi tegangan
4. Sebagai penghambat aliran arus listrik,dan lain-lain.
Resistor berdasarkan nilainya dapat dibagi dalam 3 jenis yaitu :
1. Fixed Resistor
2. Variable Resistor
3. Resistor Non Linier
:
:
:
Yaitu resistor yang nilai hambatannya tetap.
Yaitu resistor yang nilai hambatannya dapat diubah-ubah.
Yaitu resistor yang nilai hambatannya tidak linier karena pengaruh faktor lingkungan misalnya suhu dan cahaya.
Resistor Tetap (Fixed)
Secara fisik bentuk resistor tetap adalah sebagai berikut :
Beberapa hal yang perlu diperhatikan :
1.
2.
3.
Makin besar bentuk fisik resistor, makin besar pula daya resistor tersebut.
Semakin besar nilai daya resistor makin tinggi suhu yang bisa diterima resistor tersebut.
Resistor bahan gulungan kawat pasti lebih besar bentuk dan nilai daya-nya dibandingkan resistor dari bahan carbon.
Resistor Variabel
1. Trimpot : Yaitu variabel resistor yang nilai hambatannya dapat diubah dengan mengunakan obeng.
2. Potensio :

Yaitu variabel resistor yang nilai hambatannya dapat diubah langsung mengunakan tangan (tanpa alat bantu) dengan cara memutar poros engkol atau mengeser kenop untuk potensio geser.
Contoh bentuk fisik dari variable resistor jenis Trimpot :
Contoh bentuk fisik dari variable resistor jenis Potensio :
Bentuk resistor non linier misalnya PTC, LDR dan NTC

PTC : Positive Temperatur Coefisien
adalah jenis resistor non linier yang nilai hambatannya terpengaruh oleh perubahan suhu. Makin tinggi suhu yang mempengaruhi makin besar nilai hambatannya.


NTC : Negative Temperatur Coefisien
adalah jenis resistor non linier yang nilai hambatannya terpengaruh oleh perubahan suhu. Makin tinggi suhu yang mempengaruhi makin kecil nilai hambatannya.

LDR : Light Dependent Resistor
adalah jenis resistor non linier yang nilai hambatannya terpengaruh oleh perubahan intensitas cahaya yang mengenainya. Makin besar intensitas cahaya yang mengenainya makin kecil nilai hambatannya.
Simbol dari fixed resistor adalah sebagai berikut :
Resistor Tetap
Standar AS dan Jepang Eropa
Simbol dari variable resistor adalah sebagai berikut :
Resistor Variabel
Standar AS dan Jepang Eropa

Simbol dari resistor non linier adalah sebagai berikut :
Resistor Non Linier
Jenis LDR NTC PTC

Cara menentukan kaki transistor dan CARA MENGUKUR TRANSISTOR

TRANSISTOR
Transistor adalah termasuk komponen utama dalam elektronika. Transistor terbuat dari 2 dioda germanium yang disatukan. Tegangan kerja transistor sama dengan dioda yaitu 0,6 volt.
Transistor memiliki 3 kaki yaitu :
• EMITOR (E)
• BASIS (B)
• COLECTOR (C)
Jenis transistor ada 2 yaitu :
1. Transistor PNP (anoda katoda anoda / kaki katoda yang disatukan)
2. Transistor NPN (katoda anoda katoda / kaki anoda yang disatukan)
Contoh transistor : C 828, FCS 9014, FCS 9013, TIP 32, TIP 31, C5149, C5129, C5804, BU2520DF, BU2507DX, dll

Simbol di rangkaian : "Q", simbol gambarnya dibawah ini :

Menentukan Kaki Transistor
Menentukan Kaki Basis
Putar batas ukur pada Ohmmeter X10 atau X100.
Misalkan kaki transistor kita namakan A, B, dan C.
Bila probe merah / hitam => kaki A dan probe lainnya => 2 kaki lainnya secara bergantian jarum bergerak semua dan jika dibalik posisi hubungnya tidak bergerak semua maka itulah kaki BASIS.
Menentukan Kaki Colector NPN
Putar batas ukur pada Ohmmeter X1K atau X10K.
Bila probe merah => kaki B dan probe hitam => kaki C. Kemudian kaki A (basis) dan kaki B dipegang dengan tangan tapi antar kaki jangan sampai terhubung. Bila jarum bergerak sedikit berarti kaki B itulah kaki COLECTOR.
Jika kaki basis dan colector sudah diketahui berarti kaki satunya adalah emitor.
Mengukur Transistor Dengan Multitester
Batas ukur pada Ohmmeter X10 / X100
TRANSISTOR PNP
 TRANSISTOR NPN


 TRANSISTOR NPN DENGAN DUMPER

CARA MENGUKUR RESISTOR

RESISTOR
Resistor adalah komponen elektronika yang terbuat dari arang yang bersifat sebagai tahanan / penghambat. Satuan Resistor adalah Ohm (Ω). Ukuran lainnya adalah Watt.
1 Mega Ohm (MΩ) = 1.000 Kilo Ohm (KΩ)
1 Kilo Ohm (KΩ) = 1.000 Ohm (Ω)
Resistor memiliki gelang warna yang merupakan kode ukuran dari resistor tersebut. Resistor terbagi menjadi :
a. Fixed resistor ( resistor biasa ) adalah resistor yang ukurannya tetap.
 
b. Variable resistor adalah resistor yang ukurannya dapat dirubah.

Variable resistor ada 5 jenis yaitu :
• Potensiometer • Trimmer Potensio (Trimpot) • NTC (Negative Temperatur Coefficient) : semakin panas hambatannya semakin kecil • PTC (Positive Temperatur Coefficient) : semakin panas hambatannya semakin besar • LDR (Light Dependence Resistor) : bila terkena cahaya maka hambatan akan mengecilFungsi resistor dalam rangkaian elektronika :
• Sebagai beban rangkaian • Untuk membagi tegangan atau arus


Simbol Resistor dalam rangkaian :

Berikut daftar kode warna resistor :


Misal :
Resistor dengan gelang warna :
I. Coklat : 1
II. Hitam : 0
III. Merah : 00
IV. Perak : 10%
Jadi nilai resistor tersebut adalah 1000 Ohm atau 1 K Ohm dengan toleransi 10% artinya nilai aslinya bisa berkisar antara 900 Ohm – 1100 Ohm. Angka 900 didapat dari 1000 – (1000 x 10%) dan 1100 Ohm dari 1000 + (1000 x 10%).
GABUNGAN RESISTOR
Resistor Hubung Seri

Resistor yang dihubungkan seri nilai hambatannya adalah Rt = R1 + R2 + R ...
Misal : 1K Ohm + 1K Ohm = 2K Ohm

Resistor Hubung Paralel
Resistor yang dihubungkan paralel hasilnya adalah 1/Rt = 1/R1 + 1/R2 + 1/R .....
Misal : 1K Ohm diparalel dengan 1K Ohm hasilnya adalah 0,5 K Ohm.
Mengukur Resistor Dengan Multi Tester
1. Pastikan anda sudah melakukan zerro Ohm adj.
2. Putar batas ukur pada Ohmmeter (pastikan batas ukur lebih tinggi atau hampir sama dengan perkiraan resistor yang diukur).
3. Hubungkan probe ke masing-masing kaki resistor (bolak balik sama saja)
4. Lihat penunjukan jarum pada papan skala.

Kesimpulan Hasil Pengukuran1. Jarum menunjuk angka sesuai dengan ukuran aslinya : resistor baik
2. Jarum menunjuk angka lebih besar / kecil dari ukuran aslinya : resistor rusak
3. Jarum tidak bergerak sama sekali : resistor putus
4. Jarum menunjuk angka nol : resistor short

Fungsi Dioda

Pengertian Dioda adalah komponen elektronika yang terbuat dari sambungan semikonduktor tipe p dan tipe n. Sambungan tipe p dan tipe n berfungsi terutama sebagai penyearah arus dalam pengertian dioda. Bahan tipe p menjadi sisi anoda dan bahan tipe n menjadi sisi katoda. Sisi anoda di sebut dengan kutub positif sedangkan sisi katoda di sebut dengan kutub negatif.
Tergantung polaritas yang di berikan, dioda juga bisa berlaku sebagai sebuah saklar tertutup apabila bagian anoda mendapatkan tegangan positif sedangkan katoda mendapatkan tegangan negatif dan juga bisa berlaku sebagai saklar terbuka apabila bagian anoda mendapatkan tegangan negatif sedangkan katoda mendapatkan tegangan positif. Kondisi seperti ini hanya terjadi pada dioda ideal-konseptual.
Pengertian Dioda
Pada sambungan dalam pengertian dioda dua jenis yang berlawanan ini atau berbeda tipe p-n akan muncul daerah deplesi yang akan membentuk gaya barier. Gaya dapat kita gunakan dengan tegangan sebesar 0,7 volt yang di namakan dengan break down voltage. Maksud dari tegangan break down voltage yaitu tegangan minimum di mana dioda akan bersifat sebagai konduktor atau penghantar arus listrik.
Dalam pengertian dioda juga terdapat lambing. Lambing dioda adalah anak panah yang terdapat pada dioda dengan balok melintang yang di nyatakan dengan huruf D. Proses terjadinya adalah arus mengalir dari kutub positif menuju kutub negatif, maka arus hanya akan mengalir sesuai dengan arah yang di tunjukan anak panah.
Dioda sebenarnya merupakan semikonduktor yang paling sederhana dan sering di sebut komponen elektronika satu arah karena komponen ini hanya dapat menghantarkan arus listrik satu arah jika kita menyumbat arus. Dioda yang terbuat dari bahan germanium memiliki tegangan halang sekitar 0,3 volt.
Jenis jenis dioda pada prinsipnya bermacam macam, ada yang di sebut dengan dioda silikon, dioda zener, dan dioda bridge. Fungsi dari ketiganya juga bervariasi, salah satunya adalah dioda silikon yang kebanyakan di gunakan pada peralatan catu daya sebagai penyearah arus dan pengaman tegangan kejut.

Fungsi transistor

Fungsi Transistor dalam suatu rangkaian elektronika, terutama dalam sebuah sirkuit atau jalan sebuah rangkaian. Secara keseluruhan fungsi transistor hanya sebagai jangkar dalam suatu komponen. Transistor merupakan komponen elektronika yang memiliki 3 kaki,di mana dari masing masing kaki di beri nama dengan basis (B), colector (C) dan emitor (E).
Transistor adalah sebuah alat semikonduktor yang bisa di pakai sebagai penguat, sebagai sirkuit pemutus dan penyambung tegangan (switching), stabilisasi tegangan, modulasi sinyal dan sebagai fungsi lainnya. Transistor sendiri juga dapat kita jadikan semacam kran listrik , di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET) dapat memungkinkan pengaliran arus listrik yang sangat akurat dari sumber listriknya.
Fungsi transistor juga dapat kita bedakan menjadi 2 bagian, yaitu transistor bagian PNP dan transistor bagian NPN. Untuk dapat membedakan antara transistor PNP dan transistor NPN dapat kita lihat dari arah panah pada kaki emitornya. Contohnya adalah transistor PNP yang anak panahnya mengarah ke dalam dan transistor NPN arah panahnya mengarah ke luar.
Fungsi Transistor
Fungsi transistor memang sangat penting dalam dunia elektronika modern. Khususnya dalam rangkaian analog, di mana transistor di gunakan dalam amplifier atau penguat. Di dalam rangkaian analog meliputi pengeras suara, sumber listrik stabil dan juga penguat sinyal radio.
Sedangkan dalam rangkaian digital, transistor banyak di gunakan sebagai saklar yang memiliki kecepatan tinggi. Dari beberapa transistor juga dapat kita rangkai sedemikian rupa sehingga sebuah transistor yang kita rangkai tadi berfungsi sebagai logic gate, memory dan komponen komponen lainnya.
Cara kerja transistor sangat berbeda dengan komponen penguat lainnya, seperti tabung elektronik yang kemampuannya dapat berkembang secara berkala tergantung dari bentuk fisik yang di miliki oleh transistor itu sendiri. Itu sebabnya transistor menjadi pilihan utama para penghobi elektronika dalam menyusun konsep rangkaian.
Sekarang ini fungsi transistor banyak yang sudah terkontaminasi dan di satukan dari beberapa jenis transistor menjadi satu buah komponen yang lebih kompleks yang dalam dunia elektronika biasa di sebut dengan Integrated Circuit (IC). IC mempunyai cara kerja dan kemampuan yang lebih sederhana, tetapi mempunyai bentuk fisik yang ringkas sehingga tidak banyak memakan tempat.
Demikian penjelasan singkat mengenai Fungsi Transistor, semoga fungsi kali ini bermanfaat bagi anda semua. Baca juga artikel menarik kami lainnya tentang Dioda Zener, Fungsi Dioda dan Pengertian Dioda.

Transistor sebagai saklar

Transistor Sebagai Saklar maksudnya adalah penggunaan transistor pada salah satu kondisi yaitu saturasi dan cut off. Pengertiannya adalah jika ada sebuah transistor berada dalam keadaan saturasi maka transistor tersebut akan seperti saklar tertutup antara colector dan emiter, sedangkan apabila transistor dalam keadaan cut off transistor tersebut akan berlaku seperti saklar terbuka.
Pengertian dari Cut off adalah kondisi transistor di mana arus basis sama dengan nol, arus output pada colector  sama dengan nol, sedangkan tegangan pada colector maksimal atau sama dengan tegangan supply. Saturasi adalah kondisi di mana transistor dalam keadaan arus basis adalah maksimal, arus colector adalah maksimal dan tegangan yang di hasilkan colector-emitor adalah minimal.
Apabila terdapat rangkaian transistor sebagai saklar banyak menggunakan jenis transistor NPN, maka ketika basis di beri tegangan tertentu. Transistor akan berada dalam kondisi ON, sedangkan besar tegangan pada basis tergantung dari spesifikasi transistor itu sendiri. Dengan cara mengatur bias sebuah transistor menjadi jenuh, maka seolah akan di dapat hubungan singkat antara kaki colector dan emitor.
Transistor Sebagai Saklar
Terminal basis akan dengan cepat mengontrol arus yang mengalir dari colector menuju emitor.  Arus yang di hasilkan dari tegangan input akan menyebabkan transistor saturasi menjadi saklar tertutup, akibat dari kejadian ini arus akan mengalir dari colector ke emitor. Pada saat kondisi tegangan colector emitor mendekati 0 volt.
Sebaliknya jika tegangan transistor sebagai saklar tidak di berikan arus tegangan, maka transistor akan berada dalam kondisi Cut off dan terminal colector emitor terputus seolah sakalar menjadi terbuka. Akibat dari pemutusan ini arus tidak akan mengalir dari colector menuju emitor. Dalam kondisi ini tegangan yang di hasilkan akan maksimal.
Kalau misalkan transistor di pakai hanya pada dua titik, yaitu titik putus dan titik saturasi, maka transistor akan di pakai sebagai saklar. Daya yang di serap oleh dua titik ini sangat kecil, tetapi dalam keadaan aktif daya yang di serap transistor akan lebih besar. Sebab pemakaian yang mana menggunakan arus lebih besar harus di upayakan agar daerah yang di lewati aktif, sehingga transistor tidak menjadi terlalu panas.
Demikian penjelasan singkat mengenai Transistor Sebagai Saklar, semoga pembahasan transistor kali ini bermanfaat bagi kita semua. Baca juga artikel kami lainnya tentang Fungsi Transistor dan Pengertian Dioda.

Transistor sebagai penguat

Gambar skema Transistor Sebagai Penguat beserta komponen dan cara pembuatannya

Transistor Sebagai Penguat adalah salah satu fungsi transistor selain transistor sebagai saklar. Pada saat ini penggunaan transistor sebagai penguat sudah banyak di gunakan dalam sebuah perangkat elektronik. Contohnya adalah Tone Control, Amplifier (Penguat Akhir), Pre-Amp dan rangkaian elektronika lainnya. Penggunaan transistor ini memang sudah menjadi keharusan dalam komponen elektronika.
Transistor merupakan suatu komponen monokristal semi konduktor di mana dalam komponen terdapat dua pertemuan antara P-N. Sehingga kita dapat membuat dua rangkaian yaitu P-N-P dan N-P-N. Transistor merupakan suatu komponen yang dapat memperbesar level sinyal keluaran sampai beberapa kali sinyal masukan. Sinyal masukan disini dapat berupa sinyal AC ataupun DC.
Prinsip yang di gunakan dalam transistor sebagai penguat adalah arus kecil pada basis digunakan untuk mengontrol arus yang lebih besar yang diberikan ke Kolektor melewati transistor tersebut. Dari sini dapat kita lihat bahwa fungsi dari transistor hanya sebagai penguat ketik arus basis akan berubah. Perubahan arus kecil pada basis mengontrol inilah yang dinamakan dengan perubahan besar pada arus yang mengalir dari kolektor ke emitter.
Kelebihan dari transistor penguat tidak hanya dapat menguatkan sinyal, tapi transistor ini juga bisa di gunakan sebagai penguat arus, penguat tegangan dan penguat daya. Berikut ini gambar yang biasa di gunakan dalam rangkaian transistor khusunya sebagai penguat yang biasa di gunakan dalam rangkaian amplifier sedehana.
Transistor Sebagai Penguat
Fungsi transistor sebagai saklar dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cutt-off). Pada saat saturasi nilai resistansi penyambungan kolektor emitter secara ideal sama dengan nol atau koklektor terhubung langsung. Dan pada saat cut-off nilai resistansi penyambungan kolektor emitter secara ideal sama dengan tak terhingga atau terminal kolektor dan emitter terbuka.
Suatu transistor sebagai penguat dapat bekerja secara optimal  maka titik penguat dengan transistor harus di tentukan dan juga harus sama dengan yang di tentukan oleh garis beban AC/DC. Contohnya adalah memiliki titik kerja di daerah cut-off, titik kerja berada di tengah-tengah garis beban dan penguat kelas AB merupakan gabungan antara kelas A dan B yang bekerja secara bergantian dengan tipe transistor PNP dan NPN.
Demikian penjelasan singkat mengenai Transistor Sebagai Penguat, semoga artikel kali ini bermanfaat. Baca juga artikel transistor lainnya tentang Transistor Sebagai Saklar, Jenis-Jenis Transistor, Pengertian Transistor dan Fungsi Transistor.

MosFET

Transistor efek-medan semikonduktor logam-oksida (MOSFET) adalah salah satu jenis transistor efek medan. Prinsip dasar perangkat ini pertama kali diusulkan oleh Julius Edgar Lilienfeld pada tahun 1925 . MOSFET mencakup kanal dari bahan semikonduktor tipe-N dan tipe-P, dan disebut NMOSFET atau PMOSFET (juga biasa nMOS, pMOS). Ini adalah transistor yang paling umum pada sirkuit digital maupun analog, namun transistor sambungan dwikutub pada satu waktu lebih umum.

Daftar isi

Etimologi

Kata 'logam' pada nama yang sekarang digunakan sebenarnya merupakan nama yang salah karena bahan gerbang yang dahulunya lapisan logam-oksida sekarang telah sering digantikan dengan lapisan polisilikon (polikristalin silikon). Sebelumnya aluminium digunakan sebagai bahan gerbang sampai pada tahun 1980 -an ketika polisilikon mulai dominan dengan kemampuannya untuk membentuk gerbang menyesuai-sendiri. Walaupun demikian, gerbang logam sekarang digunakan kembali karena sulit untuk meningkatkan kecepatan operasi transistor tanpa pintu logam.

IGFET adalah peranti terkait, istilah lebih umum yang berarti transistor efek-medan gerbang-terisolasi, dan hampir identik dengan MOSFET, meskipun dapat merujuk ke semua FET dengan isolator gerbang yang bukan oksida. Beberapa menggunakan IGFET ketika merujuk pada perangkat dengan gerbang polisilikon, tetapi kebanyakan masih menyebutnya MOSFET.

Komposisi

Fotomikrograf dua gerbang logam MOSFET dalam ujicoba.
Biasanya bahan semikonduktor pilihan adalah silikon, namun beberapa produsen IC, terutama IBM, mulai menggunakan campuran silikon dan germanium (SiGe) sebagai kanal MOSFET. Sayangnya, banyak semikonduktor dengan karakteristik listrik yang lebih baik daripada silikon, seperti galium arsenid (GaAs), tidak membentuk antarmuka semikonduktor-ke-isolator yang baik sehingga tidak cocok untuk MOSFET. Hingga kini terus diadakan penelitian untuk membuat isolator yang dapat diterima dengan baik untuk bahan semikonduktor lainnya.

Untuk mengatasi peningkatan konsumsi daya akibat kebocoran arus gerbang, dielektrik κ tinggi menggantikan silikon dioksida sebagai isolator gerbang, dan gerbang logam kembali digunakan untuk menggantikan polisilikon[1].

Gerbang dipisahkan dari kanal oleh lapisan tipis isolator yang secara tradisional adalah silicon dioksida, tetapi yang lebih maju menggunakan teknologi silicon oxynitride. Beberapa perusahaan telah mulai memperkenalkan kombinasi dielektrik κ tinggi + gerbang logam di teknologi 45 nanometer.

Simbol sirkuit

Berbagai simbol digunakan untuk MOSFET. Desain dasar umumnya garis untuk saluran dengan kaki sumber dan cerat meninggalkannya di setiap ujung dan membelok kembali sejajar dengan kanal. Garis lain diambil sejajar dari kanal untuk gerbang. Kadang-kadang tiga segmen garis digunakan untuk kanal peranti moda pengayaan dan garis lurus untuk moda pemiskinan.
Sambungan badan jika ditampilkan digambar tersambung ke bagian tengan kanal dengan panah yang menunjukkan PMOS atau NMOS. Panah selalu menunjuk dari P ke N, sehingga NMOS (kanal-N dalam sumur-P atau substrat-P) memiliki panah yang menunjuk kedalam (dari badan ke kanal). Jika badan terhubung ke sumber (seperti yang umumnya dilakukan) kadang-kadang saluran badan dibelokkan untuk bertemu dengan sumber dan meninggalkan transistor. Jika badan tidak ditampilkan (seperti yang sering terjadi pada desain IC desain karena umumnya badan bersama) simbol inversi kadang-kadang digunakan untuk menunjukkan PMOS, sebuah panah pada sumber dapat digunakan dengan cara yang sama seperti transistor dwikutub (keluar untuk NMOS, masuk untuk PMOS).

JFET P-Channel Labelled.svg IGFET P-Ch Enh Labelled.svg IGFET P-Ch Enh Labelled simplified.svg IGFET P-Ch Dep Labelled.svg Kanal-P
JFET N-Channel Labelled.svg IGFET N-Ch Enh Labelled.svg IGFET N-Ch Enh Labelled simplified.svg IGFET N-Ch Dep Labelled.svg Kanal-N
JFET MOSFET pengayaan MOSFET pemiskinan

Untuk simbol yang memperlihatkan saluran badan, di sini dihubungkan internal ke sumber. Ini adalah konfigurasi umum, namun tidak berarti hanya satu-satunya konfigurasi. Pada dasarnya, MOSFET adalah peranti empat saluran, dan di sirkuit terpadu banyak MOSFET yang berbagi sambungan badan, tidak harus terhubung dengan saluran sumber semua transistor.

Operasi MOSFET

Untuk informasi lebih lanjut, lihat referensi berikut[2].

Struktur Semikonduktor–Logam–Oksida

Struktur Semikonduktor–Logam–Oksida pada silikon tipe-P
Struktur semikonduktor–logam–oksida sederhana diperoleh dengan menumbuhkan selapis oksida silikon di atas substrat silikon dan mengendapkan selapis logam atau silikon polikristalin. Karena oksida silikon merupakan bahan dielektrik, struktur MOS serupa dengan kondensator planar dengan salah satu elektrodenya digantikan dengan semikonduktor.
Ketika tegangan diterapkan membentangi struktur MOS, tegangan ini mengubah penyebaran muatan dalam semikonduktor. Umpamakan sebuah semikonduktor tipe-p (dengan NA merupakan kepadatan akseptor, p kepadatan lubang; p = NA pada badan netral), sebuah tegangan positif V_{GB} dari gerbang ke badan membuat lapisan pemiskinan dengan memaksa lubang bermuatan positif untuk menjauhi antarmuka gerbang-isolator/semikonduktor, meninggalkan daerah bebas pembawa. Jika V_{GB} cukup tinggi, kepadatan tinggi pembawa muatan negatif membentuk lapisan inversi dibawah antarmuka antara semikonduktor dan isolator. Umumnya, tegangan gerbang dimana kepadatan elektron pada lapisan inversi sama dengan kepadatan lubang pada badan disebut tegangan ambang.
Struktur badan tipe-p ini adalah konsep dasar dari MOSFET tipe-n, yang mana membutuhkan penambahan daerah sumber dan cerat tipe-n.

Struktur MOSFET dan formasi kanal

Irisan NMOS tanpa kanal yang terbentuk (keadaan mati)
Irisan NMOS dengan kanal yang terbentuk (keadaan hidup)
Sebuah transistor efek-medan semikonduktor–logam–oksida (MOSFET) adalah berdasarkan pada modulasi konsentrasi muatan oleh kapasitansi MOS di antara elektrode badan dan elektrode gerbang yang terletak di atas badan dan diisolasikan dari semua daerah peranti dengan sebuah lapisan dielektrik gerbang yang dalam MOSFET adalah sebuah oksida, seperti silikon dioksida. Jika dielektriknya bukan merupakan oksida, peranti mungkin disebut sebagai FET semikonduktor–logam–terisolasi (MISFET) atau FET gerbang–terisolasi (IGFET). MOSFET menyertakan dua saluran tambahan yaitu sumber dan cerat yang disambungkan ke daerah dikotori berat tersendiri yang dipisahkan dari daerah badan. Daerah tersebut dapat berupa tipe-p ataupun tipe-n, tetapi keduanya harus dari tipe yang sama, dan berlawanan tipe dengan daerah badan. Daerah sumber dan cerat yang dikotori berat biasanya ditandai dengan '+' setelah tipe pengotor. Sedangkan daerah yang dikotori ringan tidak diberikan tanda.
Jika MOSFET adalah berupa salur-n atau NMOS FET, lalu sumber dan cerat adalah daerah 'n+' dan badan adalah daerah 'p'. Maka seperti yang dijelaskan di atas, dengan tegangan gerbang yang cukup, di atas harga tegangan ambang, elektron dari sumber memasuki lapisan inversi atau salur-n pada antarmuka antara daerah-p dengan oksida. Kanal yang menghantar ini merentang di antara sumber dan cerat, dan arus dialirkan melalui kanal ini jika ada tegangan yang dikenakan di antara sumber dan cerat.
Jika tegangan gerbang dibawah harga ambang, kanal kurang terpopulasi dan hanya sedikit arus bocoran praambang yang dapat mengalir dari sumber ke cerat.

Moda operasi

Operasi dari MOSFET dapat dibedakan menjadi tiga moda yang berbeda, bergantung pada tegangan yang dikenakan pada saluran. Untuk mempermudah, perhitungan dibawah merupakan perhitungan yang telah disederhanakan[3][4].
Untuk sebuah MOSFET salur-n moda pengayaan, ketiga moda operasi adalah:

Moda Inversi Lemah

Disebut juga moda Titik-Potong atau Pra-Ambang, yaitu ketika VGS < Vth
dimata V_th adalah tegangan ambang peranti.
Berdasarkan model ambang dasar, transistor dimatikan dan tidak ada penghantar antara sumber dan cerat. Namun pada kenyataannya, distribusi Boltzmann dari energi elektron memungkinkan beberapa elektron berenergi tinggi pada sumber untuk memasuki kanal dan mengalir ke cerat, menghasilan arus praambang yang merupakan fungsi eksponensial terhadan tegangan gerbang–sumber. Walaupun arus antara cerat dan sumber harusnya nol ketika transistor minatikan, sebenarnya ada arus inversi-lemah yang sering disebut sebagai bocoran praambang.
Pada inversi-lemah, arus berubah eksponensial terhadap panjar gerbang-ke-sumber VGS[5][6]
I_D \approx I_{D0}e^{\frac{V_{GS}-V_{th}}{nV_T}},
dimana ID0 = arus pada V_{GS}=V_{th} dan faktor landaian n didapat dari
n=1+C_D/C_{OX},
dengan C_D = kapasitansi dari lapisan pemiskinan dan C_{OX} = kapasitansi dari lapisan oksida.
Beberapa sirkuit daya-mikro didesain untuk mengambil keuntungan dari bocoran praambang.[7][8][9] Dengan menggunakan daerah inversi-lemah, MOSFET pada sirkuit tersebut memberikan perbandingan transkonduktansi terhadap arus yang tertinggi (g_m/I_D=1/(nV_T)), hampir seperti transistor dwikutub. Sayangnya lebar-jalur rendah dikarenakan arus penggerak yang rendah.[10][11]
arus cerat MOSFET vs. Tegangan cerat-ke-sumber untuk beberapa harga V_{GS}-V_{th}, perbatasan antara moda linier (Ohmik) dan penjenuhan (aktif) diperlihatkan sebagai lengkung parabola di atas
Irisan MOSFET dalam noda linier (ohmik), daerah inversi kuat terlihat bahkan didekat cerat
Irisan MOSFET dalam moda penjenuhan (aktif), terdapat takik didekat cerat

Moda trioda

Disebut juga sebagai daerah linear (atau daerah Ohmik[12][13]) yaitu ketika VGS > Vth dan VDS < ( VGS - Vth ).
Transistor dihidupkan dan sebuah kanal dibentuk yang memungkinkan arus untuk mengalir di antara sumber dan cerat. MOSFET beroperasi seperti sebuah resistor, dikendalikan oleh tegangan gerbang relatif terhadap baik tegangan sumber dan cerat. Arus dari cerat ke sumber ditentukan oleh:
I_D= \mu_n C_{ox}\frac{W}{L} \left( (V_{GS}-V_{th})V_{DS}-\frac{V_{DS}^2}{2} \right)
dimana \mu_n adalah pergerakan efektif pembawa muatan, W adalah lebar gerbana, L adalah panjang gerbang dan C_{ox} adalah kapasitansi oksida gerbang tiap unit luas. Transisi dari daerah eksponensial praambang ke daerah trioda tidak setajam seperti yang diperlihatkan perhitungan.

Moda penjenuhan

Juga disebut dengan Moda Aktif[14][15]
Ketika VGS > Vth dan VDS > ( VGS - Vth )
Transistor dihidupkan dan kanal dibentuk, memungkinkan arus untuk mengalir di antara sumber dan cerat. Karena tegangan cerat lebih tinggi dari tegangan gerbang, elektron menyebar dan penghantaran tidak melalui kanal sempit tetapi melalui kanal yang jauh lebih lebar. Awal dari daerah kanal disebut penyempitan untuk menunjukkan kurangnya daerah kanal didekat cerat. Arus cerat sekarang hanya sedikit bergantung pada tegangan cerat dan dikendalikan terutama oleh tegangan gerbang–sumber.
I_D = \frac{\mu_n C_{ox}}{2}\frac{W}{L}(V_{GS}-V_{th})^2 \left(1+\lambda V_{DS}\right).
Faktor tambahan menyertakan λ, yaitu parameter modulasi panjang kanal, membuat tegangan cerat mandiri terhadap arus, dikarenakan oleh adanya efek Early.
g_m=\frac{2I_D}{V_{GS}-V_{th}}=\frac{2I_D}{V_{ov}},
dimana kombinasi Vov = VGS - Vth dinamakan tegangan overdrive.[16] Parameter penting desain MOSFET adalah resistansi keluaran r_O:
r_O=\frac{1+\lambda V_{DS}}{\lambda I_D}=\frac {1/\lambda +V_{DS}} {I_D}.

Tipe MOSFET lainnya

MOSFET gerbang ganda

MOSFET gerbang ganda mempunyai konfigurasi tetroda, dimana semua gerbang mengendalikan arus dalam peranti. Ini biasanya digunakan untuk peranti isyarat kecil pada penggunaan frekuensi radio dimana gerbang kedua gerang keduanya digunakan sebagai pengendali penguatan atau pencampuran dan pengubahan frekuensi.

FinFET

Peranti FinFET gerbang ganda.
FinFET adalah sebuah peranti gerbang ganda yang diperkenalkan untuk memprakirakan flek kanal pendek dan mengurangi perendahan sawar diinduksikan-cerat.

MOSFET moda pemiskinan

Peranti MOSFET moda pemiskinan adalah MOSFET yang dikotori sedemikian pura sehingga sebuah kanal terbentuk walaupun tidak ada tegangan dari gerbang ke sumber. Untuk mengendalikan kanal, tegangan negatif dikenakan pada gerbang untuk peranti salur-n sehingga "memiskinkan" kanal, yang mana mengurangi arus yang mengalir melalui kanal. Pada dasarnya, peranti ini ekivalen dengan sakelar normal-hidup, sedangkan MOSFET moda pengayaan ekivalen dengan sakelar normal-mati.[17]
Karena peranti ini kurang berdesah pada daerah RF dan penguatan yang lebih baik, peranti ini sering digunakan pada peralatan elektronik RF.

Logika NMOS

MOSFET salur-n lebih kecil daripada MOSFET salur-p untuk performa yang sama, dan membuat hanya satu tipe MOSFET pada kepingan silikon lebih murah dan lebih sederhana secara teknis. Ini adalah prinsip dasar dalam desain logika NMOS yang hanya menggunakan MOSFET salur-n. Walaupun begitu, tidak seperti logika CMOS, logika NMOS menggunakan daya bahkan ketika tidak ada pensakelaran. Dengan peningkatan teknologi, logika CMOS menggantikan logika NMOS pada tahun 1980-an.

MOSFET daya

Irisan sebuah MOSFET daya dengan sel persegi. Sebuah transistor biasanya terdiri dari beberapa ribu sel.
MOSFET daya memiliki struktur yang berbeda dengan MOSFET biasa.[18] Seperti peranti semikonduktor daya lainnya, strukturnya adalah vertikal, bukannya planar. Menggunakan struktur vertikal memungkinkan transistor untuk bertahan dari tegangan tahan dan arus yang tinggi. Rating tegangan dari transistor adalah fungsi dari pengotoran dan ketebalan dari lapisan epitaksial-n, sedangkan rating arus adalah fungsi dari lebar kanal. Pada struktur planar, rating arus dan tegangan tembus ditentukan oleh fungsi dari dimensi kanal, menghasilkan penggunaan yang tidak efisien untuk daya tinggi. Dengan struktur vertikal, besarnya komponen hampir sebanding dengan rating arus dan ketebalan komponen sebanding dengan rating tegangan.
MOSFET daya dengan struktur lateral banyak digunakan pada penguat audio hi-fi. Kelebihannya adalah karakteristik yang lebih baik pada daerah penjenuhan daripada MOSFET vertikal. MOSFET vertikal didesain untuk penggunaan pensakelaran.

DMOS

DMOS atau semikonduktor–logam–oksida terdifusi–ganda adalah teknologi penyempurnaan dari MOSFET vertikal. Hampir semua MOSFET daya dikonstruksi dengan teknologi ini.